尊敬的用户,您好!欢迎登陆艾逊!
用户名 密码

技术资讯

液压与气动技术的一些基本知识

论液压传动系统
一、 液压传动的概念
主要利用密闭系统中的受压液体来传递运动和动力的传动方式称为液压传动。从原理上来说,液压传动所基于的最基本的原理就是帕斯卡原理,就是说,液体各处的压强是一致的,这样,在平衡的系统中,比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。所以通过液体的传递,可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。
二、 液压传动系统基本原理
液压系统的作用为通过改变压强增大作用力。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。合肥建科造价员培训班
液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。
液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。按照操作方式可以分***力操纵阀、机械操纵法、电动操纵阀等。
液压控制系统还需要液压辅助元件。这些元件包括管路和管接头、油箱、过滤器、蓄能器和密封装置。通过以上的各个器件,我们就能够建设出一个液压回路。所谓液压回路就是通过各种液压器件构成的相应的控制回路。根据不同的控制目标,我们能够设计不同的回路,比如压力控制回路、速度控制回路、多缸工作控制回路等。
一个液压系统的好坏取决于系统设计的合理性、系统元件性能的的优劣,系统的污染防护和处理,而最后一点尤为重要。
三、液压传动系统的特点
液压传动之所以能得到广泛的应用,是由于它与机械传动、电气传动相比具有以下的主要优点:
(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。例如,在井下抽取石油的泵可采用液压传动来驱动,以克服长驱动轴效率低的缺点。由于液压缸的推力很大,又加之极易布置,在挖掘机等重型工程机械上,已基本取代了老式的机械传动,不仅操作方便,而且外形美观大方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。例如,相同功率液压马达的体积为电动机的12%~13%。液压泵和液压马达单位功率的重量指标,目前是发电机和电动机的十分之一,液压泵和液压马达可小至0.0025N/W(牛/瓦),发电机和电动机则约为0.03N/W。
(3)可在大范围内实现无级调速。借助阀或变量泵、变量马达,可以实现无级调速,调速范围可达1∶2000,并可在液压装置运行的过程中进行调速。
(4)传递运动均匀平稳,负载变化时速度较稳定。正因为此特点,金属切削机床中的磨床传动现在几乎都采用液压传动。
(5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥控。
(7) 元器件“三化”率高 液压元件易于实现标准化、系列化。通用化,便于设计、制造。目前,已有大量的标准化系列化产品,选用非常方便。

液压传动存在的问题:
1) 液压系统结构复杂,液压元件制造精度要求高,使加工制造比较困难,尤其是用于控制的液压阀,为防止油液的泄漏,对零件的加工精度要求非常严格,因而成本比气压元件高。
2) 为防止泄漏对工作效率及工作平衡性的影响,对密封要求较为严格,即便如此,泄漏也难以避免。
3) 油液的黏度随温度的变化而变化,会直接影响传动机构的工作性能,因此在低温为高温条件下采用液压传动较为困难。
4) 控制部分比气压传动复杂,不适合远距离操纵,除非采用电液联合控制。
5) 液压传动系统故障比较隐蔽,不易查找。合肥施工员培训班
6) 液压传动工作过程中,要经过液压泵把机械能转变成液体的压力能,最终还要经过液压执行机构(液压缸,液压马达)把液压能转化为机械能对外做功,整个工作过程经过两次能量转换。因而能量损失较大,降低了系统的总效率。液压系统一般总效率为7O%一80%左右,而某些机械转动形式,如齿轮转动最高可达99%。
三、液压传动分类
   由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。
压力控制回路
  用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压 4种回路。
  ①调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,图中的溢流阀就起这一作用。当压力大于溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。
  ②变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高于液压源压力。
  ③卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。
  ④稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。
速度控制回路
  通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。
  ①调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。
  ②同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。
方向控制回路
控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。
四、液压传动元件的分类
方向控制阀,这类阀,如单向阀和换向阀等,用于控制油流方向,以实现执行元件的启动、停止、前进和后退。插装式,这类阀无单独的阀体,由阀芯、阀套等组成的插装元件插装在插装块体的预制孔中,插装块体起到阀体和管路作用,通过块内通道将几个插将元件组成在一起,即可成回路。通常有开关阀、比例阀、伺服阀和数字阀。开关阀调定后只能在调定状态下工作。比例阀和伺服阀能根据输入信号连接地或按比例地控制系统的参数。数字阀侧用数字信号直接控制阀的动作
   液压系统中的执行元件(如液压缸、液压油马达)在工作时,需要经常地启动、制动、换向和调节运动速度及适应外负载的变化,因此就要有一套对机构进行控制和调节的液压元件,通常用控制阀来完成。它对外不做功,仅用于控制执行元件,使其满足主机工作性能要求。
1、控制阀按其功能分类
(1)方向控制阀,这类阀,如单向阀和换向阀等,用于控制油流方向,以实现执行元件的启动、停止、前进和后退。
(2)压力控制阀,这类阀,如溢流阀、减压阀和顺序阀等,用于控制液压系统中的压力,以满足执行元件所需要的力、转矩或工作程序的控制。
(3)流量控制阀,这类阀,如节流阀和调速阀等,用于控制液压系统中的油液流量的大小,以实现执行元件所需要的运动速度。
2、控制阀按其连接方式分类
(1)管式连接,管式阀采用螺纹连接,它直接串联在系统的管路上,不需要专用的连接板。
(2)板式连接,板式阀需要专用的连接板,将阀用螺钉装在连接板上,管子与连接板相连,板的前面安装阀,板的后面接油管。
(3)法兰连接,流量大于300L/min时,用法兰连接。在管子端部焊接法兰盘,用螺钉与阀体连接。
(4)集成块式,集成块是一块通用化的六面体,四周的一面装有与执行元件相连的管接头,其余三面安装阀类元件。集成块的内孔道与各阀相通,组成不同的基本回路。集成块上下面为块与块之间的连接面,几个集成块用长螺栓叠装起来,既形成了整个液压系统。它的特点是:结构紧凑、油管少、便于装卸与维修。
(5)叠加阀式,叠加阀是标准化的液压元件,通过螺栓将阀体叠接在一起,叠加阀互相直接连接即可组成液压系统。每个叠加阀即起控制阀的作用,又起通道体的作用。它的特点是:结构紧凑、油管少、体积小、重量轻、不需要管道连接、压力损失小、节省了大量的油管和管接头。
(6)插装式,这类阀无单独的阀体,由阀芯、阀套等组成的插装元件插装在插装块体的预制孔中,插装块体起到阀体和管路作用,通过块内通道将几个插将元件组成在一起,即可成回路。 它的特点是:非常适合用大流量的场合。
3、控制阀按其操纵方式分类
通用有手动、脚踏、机动、气动、电动和液动等方式,有时是几种方式组合的形式。
4、按工作压力分类
按控制阀在液压系统的工作压力分为:低压阀、中压阀和高压阀。
5、按控制原理分类
通常有开关阀、比例阀、伺服阀和数字阀。开关阀调定后只能在调定状态下工作。比例阀和伺服阀能根据输入信号连接地或按比例地控制系统的参数。数字阀侧用数字信号直接控制阀的动作

 
四、液压传动的应用
液压传动控制是工业中经常用到的一种控制方式,它采用液压完成传递能量的过程。因为液压传动控制方式的灵活性和便捷性,液压控制在工业上受到广泛的重视。液压传动是研究以有压流体为能源介质,来实现各种机械和自动控制。液压传动利用这种元件来组成所需要的各种控制回路,再由若干回路有机组合成为完成一定控制功能的传动系统来完成能量的传递、转换和控制。
液压传动相对于机械传动来说是一门较新兴的技术。但是,由于它在某些方面具有的优良性能及特点,使得它发展非常迅速,目前已被大量应用于多种行业中。液压传动的应用性是很强的,比如装卸堆码机液压系统,它作为一种仓储机械,在现代化的仓库里利用它实现纺织品包、油桶、木桶等货物的装卸机械化工作。在机床制造业中的液压车床、磨床、铣床和刨床等的应用越来越多;在自动。非自动和数控等高效自动化机床中,其液压传动与控制技术的采用已不可缺少;在汽车制造业方面有采用液压传动的全液压越野车、液压自卸车、消防高空作业车等;在工程建筑业方面有全液压挖掘机、装载机和隧道掘进机等。此外在农业机械、轻工、冶金、船舶、军工等行业也越来越多地采用液压传动。

液压与机械和液力传动的复合应用
 (1) 串联方式
  串联方式是最为简单和常见的复合方式,是在液压马达或液压变速器的输出端和驱动桥之间设置机械式变速器以扩大调速的高效区,实现分段的无级变速。目前已广泛用于装载机、联合收获机和某些特种车辆上。对其的发展是将可在行进间变换传动比的动力换挡行星变速器直接安装在驱动轮内,实现了大变速比的轮边液压驱动,因而取消了驱动桥,更便于布局。
(2) 并联方式
  即为通常所称的“液压机械功率分流传动”,可理解为一种将液压与机械装置“并联”分别传输功率流的传动系统,也就是是利用多自由度的行星差速器把发动机输出的功率分成液压的和机械的两股“功率流”,借助液压功率流的可控性,使这两股功率流在重新汇合时可无级调节总的输出转速。这种方式将液压传动的无级调速性能好和机械传动的稳态效率高这两方面的优点结合起来,得到一个既有无级变速性能,又有较高效率和较宽高效区的变速装置。
     日本小松公司开发的这种复合方式的液压传动变速器,已经应用在装载机、推土机等工程机械上。德国Fendt拖拉机生产的采用Vario型无级变速器装备的农用拖拉机,到2003年总销量超过了30000台。

(3) 分时方式   
  对于作业速度和非作业状态下转移空驶速度相差悬殊的专用车辆,采用传统机械变速器用于高速行驶、附加液压传动装置用于低速作业的方式能很好地满足这两种工况的矛盾要求。机械——液压分时驱动的方式在此类车辆上的应用已很普遍,这一技术也已被应用于飞机除冰车和田间移栽机等需要“爬行速度”的车辆和机具上。
(4) 分位方式
  把液压马达直接安装在车轮内的“轮边液压驱动装置”是一种辅助液压驱动装置,可以解决工程机械需要提高牵引性能,但又无法采用全轮驱动方式,难以布置传统的机械传动装置的问题。液压传动的无级调速性能使以不同方式传动的驱动轮之间能协调同步,这在某种意义上也可视为一种功率分流传动:动力机的功率被分配到几组驱动轮上,经地面耦合后产生推动车辆运动的牵引力。目前,许多工程机械制造厂商将这一技术用于具有部分自走驱动能力的,诸如自走式平地机和铲运机这样的工程机械上。
 
液压与电力传动的复合应用
   由于现代技术的发展,电子技术在信号处理的能力和速度方面占有很大的优势,而液压与电力传动在各自功率元件的特性方面各有所长。因此,除了现在已普遍存在的“电子神经+液压肌肉”这种模式外,两者在功率流的复合传输方面也有许多成功的实例,如:由变频或直流调速电机和高效、低脉动的定量液压泵构成的可变流量液压油源,用集成安装的电动泵-液压缸或低速大扭矩液压马达构成的电动液压执行单元,以及混合动力工业车辆的驱动系统等。

发布时间:2013-01-16 09:21:44
 
CopyRight © 2005-2011 MRO工业品-艾逊实业(上海). All Rights Reserved.