第一:各台水环热泵机组的冷却水进品均设置二通阀,其开关与机组联动,机组开其开,机组关其也关闭。
第二:机组侧水泵的开停与二通阀联动,系统中只要有一只二通阀处于开启状态机组侧水泵就投入运行.
第三:机组侧水泵根据供回压差进行变频控制.
第四:水泵在系统设计过程中应考虑负荷特点合理搭配大小.
第五:冷却塔(锅炉)侧水泵根据系统回水温度决定开停.(32℃以上或16℃以下)
上述方案在执行过程中主要要解决两个问题。第一是根据负荷特点如何合理配置机组侧水泵。第二是系统采用何种控制方式.针对这两点我们分别给与阐述.
1机组侧水泵配置
采用水泵变速运行的变水量系统在选择水泵时应注意两点,
第一,要防止变速后水泵的振动频率与隔振装置的固有频率相同形成共振。
第二,要防止水系统由于二通阀的关闭造成其管路特性曲线的变化,从而使水泵的工作点进入喘振区。(关于这一点可在水泵选型时由生产厂家来进行校核)
下面我们通过一个个工程实例来说明变水量系统的水泵选型。某房地产工程采用水环热泵空调系统,其冷却水总量为600t/h,该系统最小负荷有可能达到设计负荷的5%。,正常情况下配置三台水泵,每台流量为200t/h。假设水泵的额定转速均为1450r/min。当部分负荷为5%时,如果循环水量随之降低,那么水泵此时的转速将要达到218r/min(定压系统水泵流量与转速成一次方关系)。那么这时会发生什么情况呢?
我们知道一台转速为1450r/min水泵的振动频率约为24HZ,当水泵转速减为218r/min时水泵的振动频率约为3.6HZ。而一般的减震器的固有频率约在3~6HZ。这样水泵在减速过程中就会发生共振。因此为了防止共振(同时也为了控制水泵振动的传递率),对与一般民用建筑而言水泵振动频率与减震器固有频率之比应在2.5以上。本例中假定减震器固有频率为6HZ,那么水泵的振动频率应在15HZ以上,水泵的转速最低应不小于900r/min(此时水泵流量约为120t/h)。这个转速正好对应系统处于20%的部分负荷下。因此为了保证系统处于更低负荷时水泵也能经济运行,我们在水系统设计中另外配置了一台小水泵。
小水泵配置依据是当一台大水泵运行至其最低转速时,如果系统负荷仍进一步下降,那么大水泵停机,开启小水泵。也就是小水泵的最大流量为一台大水泵的调速后的最小流量。
本例中小水泵的流量应为120t/h(其额定转速仍为1450r/min)。当其转速为900r/min时,流量约为75t/h,这个流量约对应12.5%的部分负荷。这样的水泵配置基本上可满足水系统的经济运行。如果还需随负荷下降进一步降低水流量,那还可配一台更小流量的水泵。其原则同。本例中这台水泵的额定流量为75t/h(额定转速为1450r/min),当其转速降为900r/min时,水泵流量降为45t/h,基本对应系统7.5%的部分负荷。这种配置方式可进一步降低水泵在低负荷时的电耗。
2变水量系统控制方式
变水量系统采用DDC控制方式,这种控制方式的优点是(1)整个系统系统可靠、节能。(2)产品价格日趋低廉、安装费用低、节省空间。(3)使用方便、升级容易、安全性强。(4)有技术支持。(5)可以实现水泵软启动,使启动过程对电网影响小。
整个控制系统是在每个楼层或一定的空调区域设置一台现场控制器,当有一台水环热泵机组投入使用后与其对应的二通阀即打开(机组与二通阀间的控制由机组自身配套控制器实现)。二通阀开户信号传至现场控制器,再由现场控制器将信号传至整个楼宇的中央集中控制器,最后由中央集中控制器将信号传至水泵,控制水泵启动。当系统中所有水环热泵机组均停止工作时,所有二通阀均关闭,此时没有信号传至现场控制器,中央集中控制器也无信号输入,这时其即控制水泵关闭。
中央集中控制器将信号传至水泵(组)后,水泵启动。根据上面的例子75t/h流量的小水泵先启动。该水泵启动后其转速由机组侧的供回水压差控制,随着系统中投入运行的机组增多,呈开启状态的二通阀也随之增多,系统供回水压差逐渐减小,水泵的转速逐渐提高。当小水泵的转速达到其额定转速后供回水压差如果再减小,这台小水泵停止运行,流量为120t/h的水泵接着投入运行,如果系统中呈开启状态的二通阀继续增多,系统供回水压差继续减小,水泵的转速继续提高,当水泵达到其额定转速时,如果供回水压差再下降那么这台水泵停止运行,一台200t/h流量的水泵开始投入。这台水泵的转速仍由供回水压差控制逐渐提高,当达到其额定转速后,如果供回水压差再下降,第二台200t/h流量的水泵投入运行。这时第一台200t/h流量的水泵减速,这两台水泵同时受供回水压差控制保持同步转速。当这两台水泵均达到额定转速后,如果压差继续下降那么第三台200t/h流量的水泵继续投入运行。此时原来达到额定转速的两台水泵减速,三台水泵同受供回水压差控制保持同步转速,直至系统达到满负荷状态三台水泵均达到额定转速。
对于冷却塔(锅炉)侧水泵其开停受机组侧水泵的回水温度控制,采用定水量运行模式。回水温度超过32℃时水泵开启,冷却塔投入运行。当回水温度低于16℃时水泵开启,锅炉投入运行.
3变水量运行经济性分析
机组侧水泵采用变水量运行模式后其节能效果究竟如何?我们仍根据前面的工程实例做一分析。
该房地产项目为一综合工程,其内包括办公、商场、住宅等部分。其全年空调运行时间为250天。(即6000小时)整个楼宇全年空调负荷分布见表一:
负荷率% 5 10 20 30 40 50
时间频数h 300 400 400 500 750 800
负荷率% 60 70 80 90 100
时间频数h 1000 800 700 300 50
几种型号水泵的额定功率分别为:(1)流量200t/h水泵,额定功率为22kw。(2)流量120t/h水泵,额定功率为11kw。(3)流量75t/h水泵,额定功率为7.5kw。根据定压系统水泵流量与输入功率呈一次方关系,我们可以计算出变水量系统的水泵在不同空调负荷率下的输入功率。见表二。
负荷率% 5 10 20 30 40 50
输入功率kw 4.5 6 11 19.8 27.2 33
耗电量kwh 1350 2400 4400 9900 20400 26400
负荷率% 60 70 80 90 100
输入功率kw 39.6 46.2 52.8 59.4 66
耗电量kwh 39600 36960 36960 17820 3300 累计199490
如果本工程水泵不配置另外两台小水泵,仅对三台大水泵进行转速控制。那么在部分负荷条件下全年水泵电耗将会怎样呢?见表三。
负荷率% 5 10 20 30